Total citations: >30,000 (by June 2023)

Six publications, each receiving >2,000 citations (with five surpassing 3,000), are linked to Google Scholar.

Highlighted publications

Cell entry mechanisms of SARS-CoV-2. Shang, J. et al., PNAS, 2020, [PDF], [Web], [PubMed], [Google Scholar]
 

Structural basis of receptor recognition by SARS-CoV-2. Shang, J. et al., Nature, 2020, [PDF], [Web], [PubMed], [Google Scholar]
 

Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Li, F. et al., Science, 2005, [PDF], [Web], [PubMed], [Google Scholar]
 

Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-Long structural studies of SARS coronavirus. Wan, Y. et al., Journal of Virology, 2020, [PDF], [Web], [PubMed], [Google Scholar]
 

Structure, function, and evolution of coronavirus spike proteins. Li, F., Annual Review of Virology, 2016, [PDF], [Web], [PubMed], [Google Scholar]
 

Origin and evolution of pathogenic coronaviruses. Cui, J. et al., Nature Reviews Microbiology, 2019, [PDF], [Web], [PubMed], [Google Scholar]
 

Receptor recognition, cell entry and evolution of SARS-CoV-2

Structural basis for mouse receptor recognition by SARS-CoV-2 omicron variant. Zhang, W. et al., PNAS, 2022, [PDF], [Web], [PubMed]

Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain. Ye, G. et al., Nature Communications, 2022, [PDF], [Web], [PubMed]

Lys417 acts as a molecular switch that regulates the conformation of SARS-CoV-2 spike protein. Geng, Q. et al., eLife, 2023, [PDF], [Web], [PubMed]

Receptor recognition, cell entry and evolution of other coronaviruses

Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Yang, Y. et al., PNAS, 2014, [PDF], [Web], [PubMed]

 Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Peng, G. et al., PNAS, 2011, [PDF], [Web], [PubMed]

 Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Wu, K. et al., PNAS, 2009, [PDF], [Web], [PubMed]

 Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. Shang, J. et al., PLOS Pathogens, 2020, [PDF], [Web], [PubMed]

 Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. Shang, J. et al., PLOS Pathogens, 2018, [PDF], [Web], [PubMed]

 Molecular mechanism for antibody-dependent enhancement of coronavirus entry. Wan, Y. et al., Journal of Virology, 2020, [PDF], [Web], [PubMed]

 Receptor recognition mechanisms of coronaviruses: a decade of structural studies. Li, F., Journal of Virology, 2015, [PDF], [Web], [PubMed]

Intervention strategies against coronavirus infections

 The Development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates. Ye, G. et al., eLife, 2021, [PDF], [Web], [PubMed]

 Discovery of Nanosota-2, -3, and -4 as super potent and broad-spectrum therapeutic nanobody candidates against COVID-19. Ye, G. et al., Journal of Virology, 2023, [PDF], [Web], [PubMed]

 Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. 
Geng, Q. et al., PLOS Pathogens, 2021, [PDF], [Web], [PubMed]

 Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. 
Du, L. et al., Nature Communications, 2016, [PDF], [Web], [PubMed]

Molecular mechanisms and intervention strategies against other human diseases

 Structural basis for multifunctional roles of mammalian aminopeptidase N. Chen, L. et al., PNAS, 2012, [PDF], [Web], [PubMed]

A unified mechanism for aminopeptidase N-based tumor cell motility and tumor-homing therapy. Liu, C. et al., Journal of Biological Chemistry, 2014, [PDF], [Web], [PubMed]

Structural insights into central hypertension regulation by human aminopeptidase A. Yang, Y. et al. Journal of Biological Chemistry, 2013, [PDF], [Web], [PubMed]

Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP.
Li, F. et al., Cell, 2002, [PDF], [Web], [PubMed]